
Variation Principles for an Arbitrary Operator. III 

By L. M. Delves 

Abstract. The methods, described in two previous papers, for generating varia- 
tion principles for the matrix elements of Hermitian operators are extended here in 
several ways. The method is first extended to cover inhomogeneous equations. A 
defect of the original formulation, that it involved two trial functions, is removed by 
rewriting the principle so that one only appears. Finally, variation-iteration schemes 
are proposed. 

1. Introduction. In two previous papers [1], [2], hereafter called I and II, the 
following problem was considered. Given two states a a), I i3), which are solutions of 
the homogeneous equations 

(H. - Ea) I) x0, 

(Hp - E#) I) =0, 

find a variation principle for the matrix element (a I W | A) of an arbitrary Her- 
mitian operator W. We here extend these results in several ways. We first extend 
the method to cover inhomogeneous equations of the type A I -Y) = I b), where 
{ b) is a given vector, and derive variation principles for the number (e { W I Y). 

Second, we are able to simplify the results somewhat. The principles derived in- 
volve two trial functions for each state I a); in Section 3 we show that an alterna- 
tive principle may be given involving a single trial function. This principle requires 
the inversion of the operator W - E1, where E1 is a constant; for many operators 
W of practical interest, this inversion is trivial. 

Finally, in Section 4 we give a suitable variation-iteration scheme for use with 
these principles, and thus a practical way of improving the results. 

We use throughout the notation of finite matrices. Thus, the states { a), I i3) 
will be written a, A; and the matrix element (a I W I if) will be written a+W3. This 
notation is chosen for its brevity and ease of printing; the results are directly 
applicable also to differential operators Ha , providing the boundary conditions are 
such that these are Hermitian. This requirement precludes scattering states from 
our discussion; the modifications to the method required to include these were 
given in II, and similar modifications go through for the cases treated here. 

2. Inhomogeneous Equations. We consider a system represented by the state 
vector xo satisfying the (linear) inhomogeneous equation 

(2) Hxo = bI 

where the matrix H is hermitian; suppose that we wish to find a variation principle 
for the quantity (W) = xo+Wxo, for some Hermitian operator W. Then, following 
the procedures of I and II, we consider the associated equation 

(H + XW)xx = b; 
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which leads to 

H1x = - lWxo 

(3) dx1 
Xi 

=dXX0 

Then it is easy to show, following again the arguments of I, that a variational 
estimate of (W) is [WI, where 

(4) [W] xo+Hxl + xl+Hxo - b+xi - xl+b + xo+Wxo. 

Similarly for off-diagonal matrix elements: given two systems xo, yo 

Hixo = b) 

H2yO = C1 

we can define xi , yi through 

Hix1 = - Wyo, 
(6) 

H2y1 = - Wxo, 

and find as a variation principle for yo+Wxo: 

6[yo+Wxo] = 0, where 

[yo+WxO]= Yo+Wx + y0+H2Y1 + Xl+HlXo - c+y1 - xl+b. 

A variation principle for xo+Wyo follows from taking the conjugate transpose of 
(7). 

An Example. As a simple sample of the use of these principles, we consider a 
set of linear equations (2) with 

/3 2 1\ 
H= 2 1 -1| 

(8) 1 -1 2 

V = (10, 1, 5), 

and suppose we are interested in the number E xi = xo+Wixo = (WX), where the 
operator WI = I, the unit operator. The exact solution to (2) and (3) in this case is 

(9) Xo+ = (1, 2, 3); xI+ = (-,2,*), (W1=)14, 
and we assume we have found approximate solution xot , xit 

x+ (0.9, 2.2, 3.3), 

(9a) xxt -(-1.9, 1.9, 0.5). 

The errors in these approximate solutions are about 10%. The vector xot gives, as 
a first approximation to (WI): 

(WI) = x+Wxxot = 16.54, 

while the variational principle (4) gives, with this xot, xig 
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[Wf] = 14.18 

with an error of about 1.3% compared to 18% in (Wi)t. 
This is likely to be a particularly favourable example because of the regular 

form of W chosen. However, we can repeat the calculation for a singular W2 . We 
choose 

(10) W2=(0 1 ) 

\0/ 

for which xi1+- (-1, 1, 1) and (W2)- X02 = 4, so that the variation principle 
for this choice of W gives an approximation td a single component of xo . 

With the same approximation as before for xot and itt = (-0.9, 0.9, 1.1), we 
find (W2)t = 4.84, [W2] = 4.24. 

The improvement in this case, although marked, is less dramatic. 
3. An Alternative Principle. The variation principles developed so far in these 

papers have required the use of two trial functions, xot and xi, for each state xO 
of interest. It is possible to rewrite the equations so that only one of these functions, 
xl, appears, while retaining the variational character of the results, and we do this 
here. The new principle then involves the operator (E1 - W)-'; but when this 
operator can be evaluated, the new form may be easier to use than the old. 

We consider here the eigenvalue equation treated in I. Suppose, for Hermitian 
H and eigenvalue Eo, 

(H - Eo)xo = 0, xO+ X0 1, 

and that we are interested in 

(11) (W) = xo+Wxo. 

We shall assume Eo is known (as discussed in I, a variational approximation to EO 
is sufficient to retain the variational character of our results), and we shall write 
H - Eo = L. Then we define xi as a solution of the equation 

(12) Lx1 (El - W)xo, 

so that 

l= xo+Lxl + xo+Wxo (W). 

Then xi also satisfies the equation 

Ax1 = 0, 

(13) A = L-(E1 -W) 'L. 

The operator A is Hermitian, since L and W are Hermitian. 
Then it is easy to show that a variation principle for (W) is [W], where 

[W] E1 + xi+Axi, 
(14) 6[W] 0. 

This principle does not involve xo explicitly; methods of using (14) in practice are 
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similar to those discussed in I. It may appear that an approximation xog to xo is 
still necessary, first to give an approximation Elt to E1 through 

Elt= xzt1xo 

and second, to determine the normalization of xi through (12). This is not so, how- 
ever; for a given form of xi , which may itself contain a number of parameters, [W] 
is a function of El ; the best value of El is then that for which a[W]/0El = 0. 

Further, the normalization of x1 may be specified by imposing the condition 

xI+L(El - W)-2Lxl = 1, 

which, from (12), is equivalent to xo+xo = 1, but which does not require a trial 
function for xo. 

The same procedure can be carried through for off-diagonal elements of W, 
but the results are unfortunately much more complicated. We assume we have 

Lixo = 0 xo+xo= 1, 
(15) 

L2YO = O. Yo+yo-1, 

for Hermitian L1, L2 ; and we are interested in yo+Wxo for some operator W. 
We shall assume 

(16) yo+WxO = xO+Wyo 

so that the matrix element is real. Then we introduce functions xl, yl satisfying 

Lix1 = Elxo - Wyo, 

(17) L2y1 = E2yo - WX, 

for which El = xo+Wyo, E2 = yo+Wxo = El from condition (16). Then it is pos- 
sible to show that a variation principle for yo+Wxo is 

b [ylWxO] = 0, 

(18) [yo+Wxo] = El- 21[xil+LEBLixl + yl+L2EBL2YI 

+ xi+LWBL2yl + yi+L2WBLixl], 

(18a) B = (W2 - E12) l. 

Equation (18) reduces to equation (14) when L1 = L2. 
As for the diagonal elements, it is necessary to fix the normalization of xl, yj 

in some way. One possible way, which does not involve a knowledge of a trial 
function for xo, yo, is through the relations 

) 1+L2EB WLlxI + yj+L2E12B2L2y1 
(19a) + x1+LiWEiB2L9yl + xl+Ll W2B2Lixi = 1, 

xI+LEB 2WL2Y + xi+LIE,2B2Lixi 
(19b) 

+ yl+L2WEB2Lix1 + yl+L2W2B2L2y1 = 1. 

Equations (19a), (19b) reduce to the conditions xo+xo - 1, yo+yo = 1, for exact 
solutions xi , yl of (17). 
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It is interesting that together they imply 

(19c) x1+L1BLlxl = y1+L2BL2Yl, 

which may be used to simplify (18), since E1 is a constant. 
The complicated nature of (18) and (19) would seem to rule them out as a 

practical means of calculation; the original principle of II would appear easier to 
use. 

Inhomogeneous Equation8. The method carries through also for inhomogeneous 
equations of the type considered in Section 2. We give here only the results for the 
diagonal elements. With the same notation as Section 2, a variation principle for 
(W) is 

(20) [WI =-(xm b + b+x1 + xi+HW-Hxl), 

for which 5[W] = 0, where xi satisfies (3) and (2). 
An Example. If we repeat the example of Section 2 for W = Wi = I, and with 

the same approximation xit to xi, we find, from (20), 

[W1] = 13.64. 

Thus in this case, equation (20) gives less accurate results than equation (7), for 
the trial functions considered. Equation (20) cannot be used to calculate (W2), 
since W2 has no inverse. 

4. A Variation-Iteration Scheme. So far we have assumed that approximations 
xot and xig to xo and xi are available. We give here one method by which a sequence 
of such approximations may be generated. For simplicity, we again limit the dis- 
cussion to diagonal matrix elements of W, although off-diagonal elements may be 
considered similarly. 

We consider the equations 

(21a) (H - Eo)xo = 0, xO+xO = 1, 

(21b) (H - Eo)xi = (E1 - W)xo, El = xoWxo 

and suppose that we have approximations xi(n) El (") x ) X Eo(, ) to xi, E1, xo, Eo. 
Then we can define (n + 1)st approximations in several ways: 
(1) Possible iterative schemes for xo are 

(22a) xO (+" AHxo0n) 

or 

(22b) = 
(nl) A (El(") 1 W)-'(H - E() )X1n) 

where in each case the multiplier A is determined from the condition 

O So~+ z 
(n+) 1. 

(2) The obvious iterative scheme for Eo is 

( 23) E (t+1) = Xo n+1) HxO(n+l) 

(3) Possible iterative schemes for xi are 
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(24a) (H - Eo(n+l))xi(n+l) = (El() - W)Xo(n+l) 

or 

(24b) (H - Eo (n+l))xi(n+l) - ((W)o(n+l) - W)xo(n+l), 

or 

(24c) Xi(n+i) -E0(n+) [Hxi(n) + (W -E(n))Xon], 

or 

(24dE((n+l) _ 1 [Hx(n) + (w- (wf)0(n+l))xo (n+l 

(4) Finally, a nonvariational estimate of E1 = xo+Wxo is 

(25a) El(n+l) = (W)j(n+1) =-Xo(n+l)+WX (n+l) 

while the variational estimates we have been discussing may be written 

(25b) El(n+l) = ) + xl(n+l)+(H - Eo(n+l))(El(n) -W)-l(H - (n+l))(n+) 

or 
El(n+l) = (W)O(n+l) 

(25c) + xi(n+l)+(H _ Eo(n+l))((W)o(n+l) - W)-l(H -Eo(n )xz 

or 

El(n+l) = (W)o(n+l) + xo(n+l)+(H - Eo(n+l))x,(n+l) 

(25d) + xi(n+l)+(H - Eo(n+l))xo(n+l). 

In each of the alternative forms (25), any of the forms (24) may be used for xi . 

We shall consider here several representative overall schemes, which we define as 
follows: First, (22b) appears to have no advantages over (22a), unless (22a) 

should not converge. We therefore consider only (22a), and define several approxi- 
mations to (W) in an obvious notation as follows: 

(W)o = El (25a), 

(W)l = El (24c, 25c), 

(W)2 = E1 (24c, 25d), 

(26) (W)3 = El (24b, 25d), 

(W)4 = El (24b, 25c), 

(W)5 = El (24a, 25b), 

(W)6 = E1 (24a, 25d). 

The forms using (24a), (24b) are at first sight attractive, since these generate 

directly the product (H - Eo)xl , which is all that is required by (25); further, we 

do not then need to estimate Eo separately. However, it is easy to see that, they are 

never a useful sequence. In fact, we have 
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(27) (w) (n+l) = (W)4(n+l) - 2 (W)o(n- (W)OlnXl) 

(w~.(il) = 2 (W)i(n - (WO (n+l) i = 5 6. 

Thus, if the sequence (W)o converges, the sequences (W)6 and .(W)6 in general do 
not; further, while (W)3 and (W)4 converge, they will give at each stage a worse 
approximation than (W)o. 

An Example. As an example, we consider a simple eigenvalue problem that has 
been used previously [3]. We take 

l-23 11 I \ l 
(28) H= (11 -3 -2), W= ( 2 ) 

and first approximations xoTl) = xI T(1)(1, 0, 0). 
The results for xo() xI (n), Eo(n) El(n) are listed in Table I. 

TABLE I. 
Variation iteration results for the matrix element (W) defined by equation (28). 
The (W)i are from different approximate schemes defined in equation (27). 

n XO(n) xi(n) Eo(n) (W)Ofn) (W)lin) (W)2(n) (W)3 (n) (W) (nf) 

1 1,0,0 1,0,0 -23 1 1 1 1 1 
2 0.902, -.431, -.039 0.823, -.378, -.033 -27.93 1.188 0.876 1.168 0.812 0.812 
3 .913, - .404, - .062 0.833, - .355, - .051 -27.97 1.171 1.165 1.172 1.205 0.453 
0 .912, - .406, - .060 _ -27.97 1.172 1.172 1.172 1.172 - 

It is seen that, as expected, (W)5 does not converge at all, while (W)3 is a very 
poor approximation. In this example, (W)2 is a better approximation than (W)l 
this is due to the circumstance that the matrix W - El is nearly singular. 

As expected, the variational estimate (W)2 is a better approximation than the 
nonvariational (W)o. In fact, to the number of figures retained, (W)2(3) is already 
equal to (W)j. This example is a testing one since X,(n) corverges~very rapidly to 
xo ; the improvement to be expected in general from the variation principle is greater 
than shown here. 
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